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Abstract
Using two surveys from Bangladesh, this paper provides evidence on the effects of microfinance 
competition on village moneylender interest rates and households’ dependence on informal 
credit. The views among practitioners diverge sharply: proponents claim that MFI competition 
reduces both the moneylender interest rate and households’ reliance on informal credit, while 
the critics argue the opposite. Taking advantage of recent econometric approaches that 
address selection on unobservables without imposing standard exclusion restrictions, we find 
that the MFI competition does not reduce moneylender interest rates, thus partially repudiating the 
proponents. The effects are heterogeneous; there is no perceptible effect at low levels of MFI 
coverage, but when MFI coverage is high enough, the moneylender interest rate increases 
significantly. In contrast, households’ dependence on informal credit tends to go down after 
becoming MFI member, which contradicts part of the critic’s argument. The evidence is consistent 
with a model where MFIs drawaway better borrowers from the moneylender, and fixed costs are 
important in informal lending.

Keywords : Microfinance, Moneylenders, Microcredit, Interest Rates, Informal Borrowing, 
Long-run Effects, Bangladesh, Identification through Heteroskedasticity

JEL Codes : O17, O12, C31
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1. Introduction
Concerns about exploitative moneylenders and usurious interest rates have motivated a variety 
of government interventions in rural credit markets for centuries in many countries: anti-usury 
laws, debt settlement boards, credit cooperatives (IRDP in India, ‘Comilla Model’ in Bangladesh), 
specialized rural banks are among the well-known examples.1 From its inception in the early 
1970s in Bangladesh, a central goal of the current microfinance movement has also been to 
free the poor from the “clutches” of moneylenders, as Muhammad Yunus, the founder of 
Grameen Bank, puts it.2 Unlike the standard banks that rely on collateral for screening and 
enforcement, the MFIs focus on rural poor without collateral, previously served only by informal 
financiers: friends, family, and especially village moneylenders. The number of poor served by 
microfinance institutions (MFIs) globally has increased exponentially from 10,000 in 1980 to 
more than 150 million in 2012. The goal of this paper is to analyze the effects of MFI expansion 
on the informal credit market with a focus on the moneylenders.

The available evidence shows that government interventions in the rural credit market in the 
1960s and 1970s largely failed to drive out the moneylenders (For discussion on the performance 
of government policy interventions, see McKinnon (1973), Von-Pischke et al. (1983), Hoff et al. 
(1993), Armendariz and Morduch (2010), Morduch and Karlan (2010)). Has the microfinance 
movement fared any better in delivering the rural poor from the “clutches” of moneylenders? 
The proponents of microfinance note that while the government credit programs were captured 
by the large landholders (Von-Pischke et al. (1983)), MFIs target land-poor households, usually
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1 References to moneylenders appear throughout history, for example in the Hindu religious Vedic texts in ancient 
India dating back to 1500 BC. The Bible tells a story in which Jesus “overthrew the tables of the moneychangers” 
(Matthew 21:12-13). Perhaps the most colorful reference to a moneylender is that of Shakespeare’s Shylock who 
demanded his pound of flesh in exchange for a late repayment (Merchant of Venice).
2 Recounting the origin of Grameen Bank, Yunus states: “(W)hen my list was done it had the names of 42 victims. The 
total amount they had borrowed was US $27. What a lesson this was to an economics professor who was teaching about 
billion dollar economic plans. I could not think of anything better than offering this US $27 from my own pocket to get the 
victims out of the clutches of the moneylenders.” Yunus (2009, 7th Nelson Mandela Lecture).
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bypassed by the formal banks, who also constitute the bulk of the clientele for the moneylenders. 
Unlike the government banks, the MFIs thus can create effective competition for the moneylenders. 
The availability of microcredit at relatively lower interest rates without any collateral allows poor 
households to substitute away from the high interest rate loans from traditional moneylenders 
and landlords. Microcredit thus is expected to drive down the moneylender interest rate and 
eventually drive them out of business as the microcredit market deepens.

Many critics and observers of MFI movement, however, contend that microfinance in fact leads to 
a higher demand for moneylender loans which drives up the interest rates. A household might find 
it necessary to borrow from moneylenders or other informal sources after becoming an MFI 
member, for example, to keep up with a rigid repayment schedule even though it did not borrow 
from them before (see Sinha and Matin (1998) for discussions in the context of Bangladesh). The 
demand for informal loans may also increase because of indivisibility of investment projects; MFI 
borrowers may require additional loans to achieve economies of scale in their microcredit financed 
investment.3 It is often argued that the ability to borrow from multiple sources may lead to 
unsustainable debt accumulation and condemn the poor to a vicious cycle of poverty and 
indebtedness.

While many practitioners would probably concur with one or the other contrasting views noted 
above, the interactions between the informal credit market and MFIs may be much more 
complex and nuanced; the price and quantity of informal credit may respond in opposite directions 
when MFI coverage increases in a village. For example, there can be a “cream skimming” effect 
where an MFI poaches away the better borrowers from the moneylender, and facing a worsened 
borrower pool (due to adverse selection and moral hazard) the moneylender needs to charge a 
higher interest rate (Bose (1998)). Another channel that gives rise to a positive effect of MFI 
penetration on moneylender interest rates, along with a reduction in rural poor’s dependence on 
moneylenders, is noted by Hoff and Stiglitz (1998): if there are significant fixed costs in screening 
and enforcement, competition from MFIs may force a moneylender to increase the interest rate 
to cover fixed costs as the number of borrowers decline.

Since moneylenders have always been at the core of policy discussions on rural financial sector 
reform, one would expect the interactions between MFIs and moneylenders to be a fruitful 
ground for empirical research. It is thus surprising that there is little systematic evidence on the 
effects of MFIs on the informal credit market in general and on the moneylenders in particular. 
The only paper of which we are aware is Mallick (2012) that uses data for 106 villages from 
Bangladesh, and reports evidence of a positive effect of MFI competition on moneylender 
interest rates, but the effects on households’ demand for informal loans are not analyzed. A 
positive effect on moneylender interest rates in itself, however, does not tell us that it is an 
outcome of higher demand; it may also result from a change in the composition and size of the 
pool of borrowers in the informal markets, as noted above. To sort out the underlying 
mechanism(s), we need to understand the effects of MFI membership on the household borrowing.  
An analysis of both household-level loan demand and village level interest rate allows us to 
differentiate between alternative hypotheses. For example, if we find that MFI penetration leads 
to higher incidence of household borrowing from moneylenders along with higher interest rates, 
this is more consistent with the demand shift explanation discussed above. In contrast, if we find 
that MFI membership reduces the probability of a household borrowing from the moneylender, 
but the moneylender interest rates increase with MFI competition, the evidence would be more 
consistent with the view that emphasizes the cream skimming effect of MFIs and fixed costs in 
informal lending.

3 This seems plausible given the recent evidence that the entrepreneurial MFI borrowers cut their consumption to 
undertake indivisible investments (see Banerjee et al. (2013)).
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Using two surveys from Bangladesh, this paper provides evidence on the effects of MFI 
penetration in the rural credit markets on moneylenders’ interest rates and households’ demand 
for informal loans. Bangladesh offers an excellent opportunity to understand the long run effects 
of MFI penetration on informal credit markets, because it is among the most mature MFI 
markets in the world with almost 40 years of microcredit lending. In 2011, there were 35 million 
MFI borrowers in Bangladesh with 248 billion taka in outstanding loans (Microfinance Regulatory 
Authority, Bangladesh Bank, 2009). According to estimates from various available data 
sources, approximately 40 percent of the households in rural areas are now MFI members (for 
example, HIES, 2010). We use two rich data sets for the empirical analysis: (i) an exceptionally 
large cross section data set that includes almost 800 villages in North-Western Bangladesh for 
the years 2006-2007, collected by the Institute of Microfinance (InM) in Dhaka and (ii) a panel 
dataset that covers from 2000 to 2007, collected by BIDS-BRAC.4 The large cross-section 
data-set with almost 800 villages provides adequate power to estimate the effects on village 
level moneylender interest rate with a measure of confidence, because there is ample variation 
in the degree of MFI penetration across different villages.

For identification of the effects of higher MFI coverage on the moneylender interest rate in a 
village, the main challenge is unobserved village-level heterogeneity. When we run an OLS 
regression of moneylender interest rates on MFI coverage, the estimated effect is likely to be 
biased, because the MFIs do not choose the location and intensity of credit programs across 
villages randomly.5 The MFIs may target relatively well-off (productive) villages to ensure high 
enough repayment rates to attract or retain donor funding. If repayment is the overriding objective, 
the OLS estimate might find a spurious positive effect of MFI coverage on moneylender interest 
rate, driven by a higher aggregate demand for credit due to the higher productive potential of the 
village. On the other hand, their location choices might be primarily driven by poverty alleviation 
objectives and we would observe them to expand programs in relatively poor, less productive, 
and risk-prone villages. Under this alternative case, one might find a zero or even negative effect 
of MFI coverage on the interest rate in an OLS regression, even if the true causal effect is 
positive. For the identification of the effects of MFI membership on the demand for moneylender 
loans (or loans from informal sources, in general) by the households, we also have to worry 
about self-selection by the households. The MFI participants may be systematically different 
from the nonparticipants in the same village in terms of unobserved characteristics such as 
entrepreneurial ability and risk aversion. The unobserved village and household level heterogeneity 
can bias the estimated effects of MFI competition on moneylender interest rate, and on household’s 
demand for informal loans, and it is not in general possible to pin down the directions of such bias 
from theoretical reasoning alone.

A standard approach to tackling the omitted variables bias is to design an instrumental variables 
strategy. However, it is extremely difficult, if not impossible, to find credible exclusion restrictions 
required for the instrumental variables approach in our application, and there has been increasing 
skepticism about the validity of the exclusion restrictions imposed in many related contexts. We 
thus take advantage of advances in econometrics that provide alternative ways to address 
omitted variables bias without imposing exclusion restrictions; in particular, we implement 
minimum-biased (MB) propensity score reweighting estimator proposed by Millimet and 
Tchernis (2013), and heteroskedasticity based identification scheme developed by Klein and

4 The InM survey was led by Baqui Khalily and Abdul Latif, and the BIDS-BRAC surveys by Mahabub Hossain and 
his collaborators.
5 Note that the spatial heterogeneity observed in the MFI activities across villages in Bangladesh is an outcome of 
MFI choices, donor policy, historical accidents, and path dependence over a period of almost 40 years. This also 
implies that it may not be feasible to study the long-run effects of MFI competition by randomized interventions 
across villages.
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Vella (2009a). While the propensity score reweighting estimators (e.g., IPW) rely on the conditional 
independence assumption (CIA), the MB estimator is attractive because it minimizes the bias 
arising from possible violation of the CIA due to selection on unobservables. Building on an 
insight originally due to Wright (1928), heteroskedasticity based identification approach was 
developed in a series of papers by Rigobon (2003), Klein and Vella (2009a, 2010) and Lewbel 
(2012). The intuition behind heteroskedasticity-based identification is that when there is 
substantial heteroskedasticity in the treatment equation, the changing variance in the residual 
acts as “probabilistic shifter” of the treatment status, similar to the shifts induced by a standard 
instrumental variable satisfying exclusion restriction (for an excellent discussion, see Rigobon 
(2003)).6 The observed heteroskedasticity in the treatment equation in our application has clear 
theoretical foundations; the heteroskedasticity results from interactions between fixed costs in 
establishing a new branch and private information of loan officers on potential borrowers. For 
the household level analysis, we exploit a two-round panel data set spanning seven years, and 
combine a difference-in-difference model with household fixed effects (DID-FE), and then 
implement different estimators including matching and MB estimatorsin the DID-FE model.7

Our main findings are as follows. The evidence strongly suggests that penetration of microfinance 
in a village increases the moneylender interest rate when the MFI coverage is high enough. At low 
levels of MFI coverage, there is no perceptible effect on the moneylender interest rate. The 
‘proponent’s view’ that competition from MFIs brings down the ‘exploitative’ interest rates thus 
seems to be contradicted. However, the results do not support the alternative view that when a 
household becomes an MFI member it is more likely to take additional loans from moneylenders 
and other informal sources. Evidence on a household’s propensity to borrow from informal 
sources based on panel data analysis shows that the MFI membership reduces significantly the 
probability that a household would borrow from them. Thus the moneylender interest rate may go 
up in a village even though MFI borrowers substitute away from moneylenders as argued by the 
proponents of microfinance. The coexistence of higher interest rate with a lower propensity to 
borrow is consistent with higher transactions costs in serving a smaller number of clients (fixed 
costs) by the moneylender and higher risk premium due to cream skimming by MFIs.

The remainder of the paper is organized as follows: Section 2 is devoted to the analysis of the 
effects of MFI competition on moneylender interest rate at the village level; Section 3 deals with 
the effects of MFI membership on household borrowing. In each section, we first discuss the 
empirical issues and our identification approach, then data, and finally present the results. The 
paper concludes with a brief summary of the results.

2. The Spread of Microfinance and Moneylender Interest Rate

2.1. Empirical Strategy
To understand the identification issues, consider the following triangular model:

6 For recent applications of heteroskedasticity based identification, see Rigobon (2003), Rigobon and Rodrik (2005), 
Maurer et al. (2012), Klein and Vella (2009b), Farre et al. (2012, 2013), Schroeder (2010), Gilchrist and Zakrajsek 
(2012), Emran and Hou (2013), and Emran and Shilpi (2012), Emran et al. (forthcoming), among others.
7 For discussions on the advantages of combining matching with a DID design, see Heckman et al. (1998) and 
Blundell and Costa-Dias (2009).

MFj = 1(α 0 + Xj δ + vj > 0) 

MLj =   0 +   1MFj + Xj    + uj  γβ β (1)

(2)




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Where, MLj is the moneylender interest rate, MFj is an indicator of MFI coverage in village j, 
and Xj is a set of village controls as well as regional fixed effects. We use binary indicators of MFI 
activities in a village at different thresholds of coverage. This is motivated by two considerations. 
First, a binary treatment allows us to take advantage of recently developed econometric 
approaches for non-experimental data in the evaluation literature (for example, the Minimum 
Biased (MB) propensity score reweighting estimator). Second, and no less important, it provides 
a simple way to analyze potentially heterogeneous effects of MFI penetration.The effects of MFI 
coverage on informal interest rates are unlikely to be constant across the distribution; its 
strength will, in general, depend on the extent of coverage with possible threshold effects. One 
would not expect much of an impact of MFI entry into a village on the informal interest rate if, for 
instance, only a small fraction of the potential informal borrowers get access to microcredit.8 A 
focal threshold for defining the binary ‘treatment’ is the mean coverage rate (42 percent in our 
sample of villages). We also use other thresholds for defining the treatment variable. Note that 
one has to be careful about the appropriate treatment and comparison groups and the interpretation 
of the estimates when the binary treatment is defined in terms of other thresholds. For example, 
consider the case when the treatment is defined as villages that have MFI coverage in the top 
quartile of the sample. To keep the comparison group same as the case of binary treatment 
defined at the cut-off of mean coverage rate, we need to exclude the villages that fall in the third 
quartile of coverage distribution.

The main identification challenge in estimating the effect of MFI penetration on moneylender 
interest rate is that, in general, the correlation between uj and vj is non-zero due to unobserved 
village characteristics such as productivity and risk. For concreteness, consider the implications 
of unobserved productivity heterogeneity. The rural credit markets are in general segmented 
because of inadequate infrastructure and the local information advantages enjoyed by moneylenders 
(Hoff and Stiglitz (1993), Ghosh, Mookherjee and Ray (1999), Banerjee (2003), Siamwalla et al. 
(1993), Aleem (1993)). In a segmented market, interest rates charged by the moneylenders in a 
village depend on its productivity characteristics; the moneylenders in a more productive village 
are able to charge higher interest rates as they extract the surplus from borrowers. If the MFIs 
also prefer to locate in villages with higher productive potential, then we would observe 
Cov(uj,vj)>0. This implies that if one runs OLS regressions, the estimated effect of MFI 
presence on moneylender interest rate across villages will be biased upward; one may find a 
spurious positive “effect”, even if the causal impact of MFIs on moneylender’s interest rate is in 
fact negative. However, the omitted productivity heterogeneity in OLS regressions may as well 
lead to a downward bias in the estimated effect of MFI penetration; this happens when the 
location choices of MFIs are primarily driven by poverty alleviation objectives. In this case, the 
MFIs target relatively less productive villages and we expect Cov( uj,vj )<0. This implies that the 
OLS estimate may spuriously find a zero or even a negative effect, when the true effect is 
positive and large in magnitude. Possible measurement errors in the MFI coverage variable 
would also bias the estimated effect towards zero due to attenuation.

A standard solution to the omitted variables bias is to employ an instrumental variables strategy. 
To develop an instrumental variables strategy for credible identification, we need an exogenous 
source of variation in the placement of MFI branches which does not affect the interest rate

8 One might wonder whether a continuous treatment variable in a quadratic specification could better capture the 
heterogenous effects. The evidence presented later shows that the effects on interest rate are insignificant for the 
first three quartiles of MFI coverage, and becomes both statistically and numerically significant only at the fourth 
quartile. Fitting a quadratic model in this case could lead us to erroneously conclude that there is a positive effect for 
the third quartile, for example. Moreover, a quadratic model involves two endogeneous variables, complicating the 
identification and estimation substantially.



across villages. The available studies on the location choices of MFIs in Bangladesh suggest 
that MFIs take into account both profit and poverty alleviation in their location choices (Salim 
(2011)). The evidence also indicates that the MFIs prefer villages closer to the market centers 
(usually the Thana center where the branch office is located) (see, Mallick and Nabin (2010), 
and Zeller et al. (2001)). However, any area characteristics that may have determined the 
placement of MFI branches (e.g. population density, infrastructure, poverty indicators) can 
potentially affect moneylender interest rate as well. Thus they are not likely to satisfy the exclusion 
restrictions required for identification.

2.2 Identification without Standard Exclusion Restrictions

Matching, Propensity Score Reweighting, and Minimum Biased Estimator

To reduce potential bias in the OLS estimates, we use three alternative estimators: matching, 
“normalized inverse probability weighted (IPW)” estimator developed by Hirano and Imbens(2001) 
and ‘minimum biased (MB)’ estimator due to Millimet and Tchernis (2013).9 The IPW estimator 
weighs the observations on the treatment group by the probability of being treated (the inverse 
of the propensity score) and weighs the observations on the control group by the probability of 
not being treated (one minus the inverse of propensity score). Busso et al. (2011) provide 
extensive Monte Carlo evidence that the normalized IPW estimator performs best among a 
wide set of matching and propensity score based estimators in applied settings.The MB estimator 
relies on the normalized IPW, but uses an appropriately trimmed sample to minimize the bias 
arising from a failure of the conditional independence assumption. For the empirical implementation, 
we employ a relatively wider radius of the neighborhood around the bias minimizing propensity 
score, equal to 0.25 which means that at least 25 percent of the both the treatment and control 
groups have a propensity score in this interval used in the estimation. The MB estimates 
reported later in this paper also correct for deviations from normality assumption using Edgeworth 
Expansion. The Monte Carlo evidence shows that the MB estimator with reasonably wide 
radius provides reliable estimates of causal effects for the relevant treatment group even when 
the conditional independence assumption is violated because of omitted variables (Millimet and 
Tchernis (2013)).

Heteroskedasticity Based Identification: Klein and Vella (2009a) Approach

We noted earlier that it may not be impossible to find plausibly exogenous characteristics of a 
village that are important determinants of location and intensity of MFI programs, but such 
village characteristics are unlikely to satisfy exclusion restrictions imposed in the interest rate 
equation. As discussed by Klein and Vella (2009a) and Lewbel (2012), existence of significant 
heteroskedasticity in the treatment equation provides a plausible source of identification in such 
cases. A substantial econometric literature has developed that exploits heteroskedasticity for 
identification when no credible instrument is available (Wright (1928), Rigobon (2003), Klein 
and Vella (2009a, 2010), Lewbel (2012)). The intuition behind this identification approach is that 
heteroskedasticity works as an exogenous ‘probabilistic shifter’ of the endogenous treatment 
variable (which, in our application, is the dummy for high MFI coverage in a village). Analogous 
to the standard instrumental variables, this probabilistic shifter helps us to trace out the causal 
relationship between the dependent variable (informal interest rate) and endogenous treatment 
variable (dummy for high MFI coverage). 

9  Recent evidence shows that there are significant scale economies in microfinance (Hartarska et al. (2013)).
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10 The central offices (“head office”) of most of the MFIs in Bangladesh are located in the capital city, Dhaka.
11 Recent evidence shows that there are significant scale economies in microfinance (Hartarska et al. (2013)).
12 In the context of Bangladesh, Rahman (2003) notes “(Achievement of financial sustainability of a branch of MFI 
requires an increase in the number of clients within the branch”. To achieve scale economies, many MFIs provide 
incentives to loan officers to increase number of borrowers through bonuses linked to number of new clients.
13 In some cases, the loan officers may even bend the formal program criteria to attain the minimum viable 
scale. This may explain part of the “targeting errors” observed in MFI programs. Also, note that the 
self-selection by the household is necessary but not sufficient for MFI membership, because the loan officer 
is the “final arbiter” in selection into a program.

What are plausible sources of heteroskedasticity in equation (2) above? The variables potentially 
giving rise to heteroskedasticity can be identified from a theoretical model that focuses on the 
interaction among fixed costs in program placement (such as establishing a branch office), MFI 
screening and households’ self-selection. The basic argument is simple and grounded on the 
available evidence; given fixed costs, once a branch is placed in a village by the central office,10  
the branch manager tries to achieve a minimum scale for the viability of the program.11 In fact, 
‘building volume’ and retaining borrowers are among the most important challenges faced by 
MFIs when opening branches in new locations.12 The set of potential clients is determined by 
the intersection of self-selection by households and MFI program selection criteria (set at the 
central office). When the potential client base is not large, to achieve scale economies, the loan 
officers have incentives to ignore private information on households’ credit worthiness or 
eligibility. Because the private information of loan officers on households is probably the most 
important component of the error term, ignoring this private information reduces the variance in 
observed coverage.13 In other words, the coverage rate would tend to bunch at around the 
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Where vj  is a zero mean homoskedastic error,     is a subset of     consisting of variables that 
generate heteroskedasticity and                     is a non-constant function. The relationship in equation 
(3) has clear economic interpretation. Suppose         is a measure of the intrinsic productivity attributes 
of area j observed and used by MFIs for the branch location decisions, but unobserved by the 
econometrician. What condition (3) above implies is that although MFIs (the central office) base their 
decisions on indicators of intrinsic productivity of area j, the actual outcome (e.g. coverage 
rate) is determined by interactions between productivity and other physical and socio-economic 
conditions (e.g. infrastructure, land distribution, poverty incidence) as determined by the       function. 
In the context of our application, the       function captures primarily the effects of screening by loan 
officers based on their private information (for more on this, see below).  

iX  iX 

v iX  π(      )s 
vj

vs
vs

vj =    v ,iX  π(      )s vj
 (3)

We utilize an approach developed by Klein and Vella (2009a) to estimate the effects of MFI 
penetration on moneylender interest rate. Evidence from a number of recent Monte Carlo 
exercises shows that the Klein and Vella (2009a) approach is effective in correcting for biases 
from omitted variables and measurement errors (Ebbes et al. (2009), Millimet and Tchernis 
(2013), Millimet (2011), Klein and Vella (2009a, 2010)). The main sources of heteroskedasticity 
in the treatment equation need to be identified from a priori theoretical reasoning based on 
intimate knowledge of the selection process.

For identification, an essential requirement in Klein and Vella (2009a) approach is that the error 
term in equation (2) exhibits substantial heteroskedasticity. Let               be the conditional 
variance function for vj satisfyingthe following condition:

S     X  π
i( )v

2

*

*

*
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minimum viable scale, similar to a corner solution.14 In contrast, when a large proportion of 
households satisfy the program-specified criteria, the loan officers do not worry about minimum 
viable scale, and their private information plays an important role in determining the actual 
coverage rate, resulting in a higher variance. Variance in the coverage rate across villages in 
this case would reflect closely the variance in the village and household characteristics relevant 
for repayment capacity and poverty alleviation and observed by the program manager and loan 
officers, but not observed by the econometrician.

In the context of Bangladesh, there are plausible reasons to expect that indicators of poverty 
incidence and of landlessness in a village would generate heteroskedasticity in the treatment 
equation. The recent evidence on “revealed objective functions” of MFIs based on the branch 
locations of Grameen Bank and BRAC in Bangladesh suggests that the MFIs take into account 
both poverty alleviation and financial sustainability in their branch location decisions (Salim 
(2011)). The MFIs thus primarily target the moderate poor, and exclude the extreme poor or 
so-called ultrapoor (Rabbani et al. (2006), Rahman (2003)). The extreme poor may also 
self-select out of such programs, because they lack the required human capital, and the 
substantial time commitment required for  group meetings etc. may be too onerous when they 
are working long hours on low-return activities for survival (Matin et al. (2008), Rabbani et al. 
(2006), Emran et al. (forthcoming)). Thus the set of potential clients available to a loan officer is 
expected to be higher in areas with high incidence of moderate poverty, but lower where 
extreme poverty is prevalent. Many MFIs including Grameen Bank and BRAC use land ownership 
as a salient targeting mechanism, a household with more than half acre (50 decimal) of land is 
in principle not eligible for the microcredit programs. However, extreme poverty is closely linked 
to landlessness, and one widely used indicator of extreme poverty is whether a household owns 
less than 10 decimal of land (for example, it is used by ultra-poor programs such as BRAC 
CFPR/TUP). Thus households with lower than 10 decimal land may be more likely to be 
excluded from and/or opt-out from the microcredit programs. Many MFIs also use possession 
of a VGD card as an indicator of moderate poverty; for example, a household with VGD card is 
not eligible for the ultrapoor program of BRAC.15 Thus one would expect that the client base for 
standard microfinance is higher in a poor village (with higher proportion of VGD card), but lower 
where proportion of landless (less than 10 decimal land) households is higher. As discussed 
above in section (2.2), this implies that the error term in the MFI coverage equation will have 
lower variance where the proportion of landless households is higher, and higher variance 
where the proportion of the moderately poor (with VGD card) is higher (the actual coverage is 
to the right of the minimum viable scale, determined by loan officers’ private information). It is 
important to appreciate that the a priori signs of the heteroskedasticity-generating variables in 
the selection and heteroskedastic probit models together provide economic rationale to our 
identification approach. 

The probability of ‘high’ MFI coverage in village j can be written as: 

14 Although the MFIs in Bangladesh are known to cross-subsidize programs, closure of branches is not unheard 
of. Even the most successful NGOs such as BRAC have closed failing branches in the recent past.
15 One might wonder if some other measures of moderate poverty based on standard poverty line estimates 
would be more suitable for our analysis. However, note that we are trying to capture the information set available 
to and used by the loan officers. While VGD card status is used by NGOs for screening, we are not aware of loan 
officers in any NGO in Bangladesh using village specific poverty line estimates for screening and selection.

P(MFj = 1) = P
Sv (Xiπ)

Xj δ( )


(4)
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16 A limitation of heteroskedasticity-based identification is that it is applicable only when the outcome variable is 
continuous. Moreover, since the estimator relies on second moments, the estimates are likely to be less efficient 
than the standard IV estimates (Lewbel (2012)). The inefficiency of the estimator implies that if we find a statistically 
significant effect, it should be interpreted as strong evidence.
17 Households meeting any of the following three conditions were included in the survey: households should have 
monthly income of Tk. 1,500 or below, or are dependent on day-labor, or have less than 50 decimal of land.
18 The household level dataset available to us does not contain the interest rate information on informal loans.
19 To appreciate the richness of the data set, recall that the only available study on the effects of MFIs on moneylender 
interest rate is based on 106 villages (see Mallick (2012)). 
20 There is however no village which reported an informal interest rate between above 120 percent and below 
180 percent.

Where P(.) is the distribution function of    . With homoskedastic errors,                 is a constant; 
the only source of identification is possible non-linearity of the P(.) function such as a Normal 
CDF in a Probit model. Such identification relies on a small fraction of observations at the tails 
of the distribution, and hence is considered unreliable (Altonji et al. (2005), Klein and Vella 
(2009a)). In the presence of heteroskedasticity,                       is no longer a constant, and identification 
exploits observations from regions where P(.) is approximately linear. In this case, the predicted 
probability from the estimation of equation (2) becomes a valid instrument for identifying the 
effects of MFI penetration on moneylender interest rate. Note also that if heteroskedasticity in 
the residual of equation (2) is weak,                has little variations (approximately a constant), 

and the predicted probability is a weak instrument that relies only on the functional form of the 
CDF for identification.16 In terms of the model of MFI location and program intensity discussed 
above, this can happen when the program coverage in most of the villages is close to the 
minimum viable scale.

2.3 Data 

The village level data for the econometric estimation of the impact of MFI coverage on informal 
interest rate come from the baseline survey conducted during 2006-2007 by the Institute of 
Microfinance (InM) for the Programmed Initiative for Monga Eradication (PRIME) of Palli 
Karma-Sahayak Fundation (PKSF). We call the dataset the InM-PKSF survey. The baseline 
survey consists of a census of all households meeting certain income, employment and land 
ownership criteria as well as a village level survey.17 The village level survey collected information 
on moneylender interest rates and availability of infrastructure and services. Empirical analysis 
of this paper is based on this village level dataset supplemented with MFI coverage rates calculated 
from the household survey.18 The dataset covers three districts (Lalmonirhat, Nilphamary and 
Gaibandha) in Rangpur division where the earliest baseline surveys of the PRIME program 
were conducted. Out of 18 upazilas (sub-districts) in these districts, survey was undertaken in 
12 upazilas. There are 804 villages in our dataset.19 To make sure that our estimates are not 
unduly influenced by a few outliers, we exclude a small number of villages reporting unusually 
high interest rate (above 180 percent) from our sample giving us a final sample of 793 villages.20 
We, however, emphasize that none of the qualitative conclusions from the empirical analysis 
are affected if we use the full sample (results are available from the authors).

The InM-PKSF survey is particularly suitable for our empirical analysis for a number of reasons. 
First, the survey was primarily targeted to poor households which are usually more dependent  

vj v iX  π(      )s 

v iX  π(      )s 

v iX  π(      )s 

*
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21 The questionnaire clearly asked about moneylender interest rate (“Mohajoni Rin” in Bengali). So it is highly unlikely, 
if not impossible, that the households confused moneylender loans with loans from friends and family. Also, it is 
standard to ask about monthly rather than annual interest rate (simple rate) in the household surveys in Bangladesh.
22 It is not uncommon to have 25-50 percent interest rate for a consumption loan for a month, which becomes 
extremely high interest rates when annualized.

on the moneylenders in the absence of MFIs. Second, interest rate data were collected for 
standardized loan products. The interest rate analyzed in this paper is the moneylender interest 
in normal times (not the lean season) for loans of duration up to one year (reported as monthly 
rate).21 We do not include interest rates on longer maturity loans, because the maturity of the 
standard MFI loans in Bangladesh is one year. The standardized rates ensure that variations in 
interest rates across villages are not due to heterogeneity in loan duration or seasonality. The 
summary statistics in appendix Table A.1 show considerable variations in both MFI coverage 
and informal interest rates. The average monthly informal interest rate in our sample villages is 
about 19 percent, and the median is 10 percent (simple rate). It is important to appreciate that 
the extremely high moneylender interest rates sometimes reported in the press and earlier 
studies refer primarily to short-term consumption loans taken to tide over a few weeks during 
the lean season.22 We also divide villages into quartiles in terms of MFI coverage rate. The 
average interest rate in the three lower quartiles is about 16 percent, but rises to 27 percent in 
the top-most quartile. Note that the moneylenders charge interest on loans at a flat rate, and 
thus the effective interest rate is higher when the declining balance over time is taken into 
account. As is widely discussed in the microcredit literature, MFIs also calculate flat rate interest 
charges on the loans. It is thus appropriate to use the flat-rate moneylender interest rates as 
reported in the InM-PKSF data set for our analysis. The average annual interest rate charged 
by MFIs in Bangladesh has been around 15-18 percent (flat rate) in recent years, according to 
CGAP. Estimates based on data from Credit and Development Forum for the year 2000 show 
that 80 percent of MFIs in Bangladesh charge 11-15 percent annual interest rate, and about 1 
percent charges more than 20 percent (Rahman (2003)). Starting from July 2004, the wholesale 
microcredit fund provider PKSF capped the interest rate at 12.5 percent flat (annual rate).

The average MFI coverage rate is about 42 percent in our sample of villages (Table A.1) which 
is comparable to coverage rate from our panel data (38 percent). According to the Household 
Income and Expenditure Survey (HIES) 2010, about 45 percent of households with less than an 
acre of land in the Rangpur division covering areas included in our sample are active borrowers 
from MFIs. The summary statistics for all other variables used in the regression are also 
reported in Table A.1.

2.4 OLS, Matching and IPW Estimates
We start with the simplest specification where the moneylender interest rate is regressed on the 
MFI coverage dummy (D=1 if coverage in a village more than the mean coverage rate) without 
any controls. The OLS estimate, reported in column (1) of Table 1, shows a statistically significant 
and positive correlation. This positive ‘effect’, however, could result from common unobserved 
village characteristics. If better infrastructure and higher productivity of a village lead to both 
higher informal interest rate and better coverage of MFIs, then one would expect this correlation 
to weaken when we add controls for village productivity and infrastructure.

In the next specification, we add several controls for village productivity and risk characteristics 
which can also potentially affect MFI placement. Access to markets and other services is 
measured by average distances to bazar (market), bus stop and secondary school. Distance to 
formal bank branch is introduced to capture potential competition from and linkages to the formal 
financial sector (Bell (1993)). Irrigation increases productivity and reduces risk of agricultural 
production, affecting both risk and returns in the credit market. Accordingly, we include percentage 
of households using irrigation as a control. We also include the number of households surveyed
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23 We emphasize again here that we are using VGD card instead of a village level “poverty line” to define the extent 
of moderate poverty, because the MFI loan officers do not rely on village level poverty line estimates (if available).

in a village as a scale variable. Vulnerable Group Development (VGD) is a major public safety 
net program targeting the poor in Bangladesh; many NGOs also use the VGD cards as an 
indicator of moderate poverty. For example, the BRAC excludes a household from its ultra-poor 
program (CFPR/TUP) if it has a VGD card. We use percentage of households with VGD cards 
as an indicator of moderate poverty in the village.23 Land ownership is used by most of the MFIs 
as a salient selection criterion. While many MFIs including BRAC, Grameen Bank, and BRDB 
in principle lend only to households owning less than 50 decimal of land, mis-targeting due to 
both type 1 and type 2 errors is not uncommon. In particular, the evidence indicates that 
landless (owning less than 10 decimal of land) are largely excluded from the standard MFI 
lending programs. Thus the landless constitutes an important clientele of moneylenders. We 
include the percentage of landless (less than 10 decimal) in the village to capture this effect. 
When these controls are added to the specification, the results (column 2) indicate a much 
larger effect of MFI coverage in the interest rate regression. In columns (3) and (4), we add 
district and upazilla fixed effects as catch-all controls for time-invariant unobserved village 
heterogeneity respectively. The coefficient of MFI coverage becomes slightly larger in column 
(4) compared with column (1). Both estimates (columns (3) and (4)) are statistically significant 
at the 1 percent level. What is striking though is the fact that instead of weakening, the partial   

Table 1
Informal Interest Rate and Micro Finance Coverage: OLS, Matching and IPW Results

OLS Matching IPW MB

(1) (2) (3) (4) (5) (6) (7) 

Dummy for High MFI 
Coverage 5.475

(2.92)***
8.466

(4.77)***
8.546

(4.87)***
6.054

(4.14)***
8.185

(4.04)***
8.511

(6.26)***
12.518

(5.40)***

% of functionally 
landless household

0.029
(0.41)

-0.041
(0.55)

-0.114
(1.54)

% of household with 
irrigated land

-0.288
(7.09)***

-0.273
(6.28)***

-0.315
(6.51)***

Distance to  bank -0.469
(1.48)

-0.612
(1.81)*

-0.385
(1.32)

Distance to market 
and facilities

1.015
(2.27)**

1.005
(2.24)**

0.674
(1.82)*

No. of  survey 
households in the 
village

-0.006
(1.49)

-0.008
(1.77)*

-0.007
(1.62)

% of households with 
VGD card

0.362
(5.14)***

0.383
(5.32)***

0.423
(6.09)***

Fixed Effects No No District Upazilla Upazilla Upazilla Upazilla

No. of Observations 793 793 793 793 793 793 793
* significant at 10%; ** significant at 5%; *** significant at 1%
Absolute t statistics in parentheses.
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24 The matching estimates do not vary across alternative matching algorithms such as nearest neighborhood and 
Kernel. More extensive matching estimates are available from the authors.

correlation between informal interest rate and MFI coverage has become numerically and 
statistically more significant when village productivity controls are added. This suggests that, in 
our application, MFI location choices are driven largely by poverty alleviation objectives, and 
thus OLS coefficients are likely to be biased downward.

The OLS regressions in Table 1 (columns (2) and (3)) identify a number of salient correlates of 
moneylender interest rates. Interest rates are lower in villages with higher irrigation coverage. 
More irrigation means lower risk and higher productivity (through green revolution). Though 
higher productivity may allow moneylenders in a segmented market to charge higher interest 
rates, the OLS results suggest that the lower risk premium predominates over the productivity 
effect. Interest rates are higher in more isolated villages (far from market centers). As the 
market segmentation is likely to be more severe in remote villages, moneylenders can, ceteris 
paribus, extract more rent by charging higher interest rates. Interest rates are also higher in 
poorer villages, which may partly reflect higher risk premium, and is lower in places where 
moneylenders face greater competition from better access to formal banks.

The last three columns in Table (1) report estimates from matching and two propensity score 
reweighting estimators: Normalized IPW and MB. The confidence intervals for IPW and MB are 
generated using bootstrapping procedure with 250 replications, following Millimet and Tchernis 
(2013). The matching estimate (Caliper with a radius of 0.25) is 8.185, larger than the OLS 
estimate in column (4), 6.054.24 The normalized IPW estimate is marginally larger in magnitude 
than the matching estimate for comparable specifications, and the MB estimate is even larger. 
In fact, the lower cut-off estimates of 95 percent confidence intervals for IPW and MB are larger 
in magnitudes than the point estimate from OLS in column (1). Recall that matching and IPW 
reduces the bias in OLS estimate by making the treatment and comparison groups more 
comparable, and the MB estimator, in addition, minimizes the bias due to the failure of CIA 
(possibly due to dynamic learning effects) in the normalized IPW by trimming the sample around the 
bias minimizing propensity score. The magnitudes of the estimates, i.e., MB >IPW >Matching >OLS, 
strengthens substantially the argument that the direction of omitted variables bias is downward. 
The results in Table (1) thus suggest strongly that the effect of MFI coverage on moneylender 
interest rate is most likely to be positive and significant in magnitude.

2.5 Estimates from Heteroskedasticity Based Identification

The specification of the estimating equation used for the Klein and Vella (2009a) approach is 
the same as in column (4) in Table 1. The implementation of the K-V estimator involves the 
following steps. First, a heteroskedastic probit is estimated to generate the predicted probability 
of participation in MFI programs. For heteroskedastic probit regression, we follow Farre et al. 
(2012, 2013) and assume that the heteroskedasticity function                     has the following parametric 
form due to Harvey (1976):

Then the predicted probability from heteroskedastic probit model is used as an instrument for 
the MFI coverage dummy. Since the standard terminology uses “first stage regression” to 
denote the first stage of a two stage least squares, we call the first step heteroskedastic probit 
model described above as the “zero stage”.

Sv (Xi π) = e
_(Xi π)

Sv (Xi π)
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We start the discussion of the results with probit estimation of the treatment equation (2). The 
results in column (1) of Table 2 show that the probability of a higher coverage rate (more than 
the mean coverage which is 42 percent) correlates significantly with the percentage of households 
using irrigation, the distance to markets and facilities, the percentage of households with VGD 
cards, and the percentage of functionally landless households. MFI coverage rate is positively 
correlated with the percentage of households with irrigation. This is to be expected when the 
repayment rate is important to MFIs. A stable source of income is needed to ensure that household 
can meet the rigid repayment schedule which starts after a few weeks of the loan disbursement. 
Since productivity (and thus average income) is higher in a village with more irrigation (green 
revolution) and income variability is lower because of less dependence on rainfall, the repayment 
objective implies that more MFIs would locate in such a village. Thus the proportion of households

Table 2
Moneylender Interest Rate and Microfinance Coverage: Heteroskedastic IV Results

MFI Coverage Informal Interest Rate

Level Residual Squared KV1 KV2

(1) (2) (3) (4) (5) 

Dummy for High MFI coverage 
in a village

25.935
(3.61)***

18.878
(2.42)**

% of household with irrigated land 0.005
(2.74)***

-0.001
(-0.166)

-0.349
(6.74)***

-0.337
(6.42)***

Distance to bank -0.004
(0.28)

0.015
(0.458)

-0.337
(1.10)

-0.354
(1.19)

Distance to market and facilities -0.119
(4.82)***

-0.022
-0.641)

1.371
(3.01)***

1.124
(2.43)**

No. of survey households in the village 0.000
(0.69)

-0.001
(-1.292)

-0.008
(1.62)

-0.008
(1.65)*

% of households with VGD card 0.014
(3.25)***

0.052***
(5.094)

0.054***
(5.049)

0.332
(4.82)***

0.365
(4.98)***

% of functionally landless household -0.011
(2.42)**

-0.019*
(-1.895)

-0.017**
(-2.089)

-0.038
(0.46)

-0.065
(0.81)

Upazilla Fixed Effects Yes Yes No Yes Yes

Zero Stage: Heteroskedastic Probit
LR test of homoskedasticity

 71.18 35.33

p-value 0.00 0.00

First Stage of IV Regression

Angrist-Pischke F Statistic 119.83 62.29

P-value 0.00 0.00

* significant at 10%; ** significant at 5%; *** significant at 1%
Absolute t statistics in parentheses
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25 The moderate poor are sometimes called “borderline poor”, i.e., households marginally below the poverty line. 
See for example, Rahman (2003).

villages (column (2)). These results are consistent with the model of MFI coverage discussed 
above that focuses on the implications of fixed costs in program placement and private information 
of loan officers and branch managers as important components of the error term in the selection 
equation (2) above. The log-likelihood ratio test for homoskedasticity can be rejected resoundingly 
at less than 1 percent significance level as reported in the lower panel of column (2).

However, when the full set of explanatory variables are included in the vector    generating 
heteroskedasticity, it leads to non-convergence problems in the estimation of some of the 
regressions reported later on ‘heterogenous treatment effects’ in section (2.6) below. For the 
sake of comparability, we thus repeat the estimation procedure with a heteroskedastic probit 
model that exploits only the two most important sources of heteroskedasticity, i.e., the percentage 
of households with a VGD card and the percentage of landless households. The results 
reported in column (3) of Table 2 show that indeed both of these variables are statistically highly 
significant in explaining the variance of the residual term in the treatment equation. The Likelihood 
ratio test of the null of homoscedasticity can also be rejected unambiguously at the 1 percent 
significance level when only these two variables are assumed to generate heteroskedasticity.

The estimation results from heteroskedasticity based identification are reported in columns (4) 
and (5) of Table 2. The instrument in column (4) (denoted as KV1) is the predicted probability 
from a “zero stage” heteroskedastic probit model when all explanatory variables are assumed 
to contribute to heteroskedasticity. The instrument used in column (5) (KV2) is the predicted 
probability when percentage of households with VGD card and percentage of landless households 
are assumed to be the sources of heteroskedasticity. The heteroskedasticity based instruments 
have substantial strength in explaining the variations in MFI coverage across villages; the 
Angrist-Pischke F statistic is 119.83 in KV1 and 62.29 in KV2. Both estimates of the effect of 
higher MFI coverage on moneylender interest rate are positive, large in magnitudes and statistically 
significant at the 5 percent level or less. Both estimates are larger than the corresponding MB 

that are MFI members would increase with the irrigation in a village. The coefficient of distance to 
markets and other facilities is negative implying that MFI coverage is higher near markets. This is 
expected as returns to investment and income tend to be higher for households located closer to the 
market centers (Emran and Hou (2013)). Mallick and Nabin (2013) also report similar evidence on 
the preference of MFIs in Bangladesh to locate in villages near markets. The MFI coverage is 
higher in villages with greater percentage of households with VGD card. This positive partial 
correlation is indicative of targeting the moderate poor in the location choice of MFIs. Finally, MFI 
coverage rate is lower in villages with higher proportion of functionally landless households. 
Emran et al. (forthcoming), Rahman (2003) and Zeller et al. (2001) also report that though MFIs 
target their lending to poor households (a common land cut-off is 50 decimal)25, the ultra-poor 
landless households have by and large not been reached by them.

Column (2) of Table 2 reports the estimates of sources of heteroskedasticity when we assume 
that all of the explanatory variables in the treatment equation may potentially contribute to
heteroskedasticity of its residual, i.e.,              in equation (2) above. The estimates in column (2) 
suggest two statistically significant determinants of heteroskedasticity apart from the Upazilla 
dummies. The residual variance increases significantly with an increase in the proportion of
moderately poor households (i.e., households with VGD cards). As noted above, the MFI coverage 
rates are also higher in these villages (see column (1) Table 2). A village with high incidence of 
landlessness, on the other hand, has lower coverage rate, according to the estimates in column 
(1) in Table 2. Higher landlessness also results in lower variances in MFI coverage rates across 

Xi  = Xi 

Xi 
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estimate, with the estimate from KV2 (restricted set of controls in     ) being lower compared with 
that from KV1 (full set of controls in     ).

A comparison of the different estimates shows the following interesting pattern. The OLS 
estimate implies a 6 percentage point difference in informal interest rate between high and low 
MFI coverage areas. The MB estimate suggests a 12.5 percentage point difference between 
the two areas, and the conservative estimate (KV2) implies about 19 percentage point difference. 
The evidence thus is strong that the correlation between unobserved village productivity and 
MFI placement decision in our application is negative. This is consistent with the evidence from 
a number of recent papers on MFI program placement in Bangladesh which find poverty targeting 
as an important criterion in the placement of MFI programs resulting in a negative selection bias 
(Salim (2011), Schroeder (2011)).

2.6 Heterogeneous Effects on Moneylender Interest Rates 

The empirical analysis so far is based on a definition of ‘high’ vs. ‘low’ coverage by MFIs that 
takes the mean coverage rate as the threshold. While the results based on this commonly-used 
threshold are interesting and informative, this is likely to be only part of the story. In this subsection, 
we use a number of different cut-off points in defining the ‘high’ and ‘low’ coverage rates which 
allow us to understand potentially heterogeneous effects of MFI penetration in village credit 
markets. We sort and divide the total sample of villages into four groups in terms of the MFI 
coverage rate. The average coverage rate in the lowest group (first quartile) is 13 percent, 
34.3 percent in the second quartile, 50.7 percent in the third quartile and 70.4 percent in the 
fourth quartile. We define the treatment and comparison groups using different combinations 
of these groups. For Klein and Vella (2009a) approach, the percentage of households with 
VGD cards and percentage of landless households are assumed to be the sources of 
heteroskedasticity in the treatment equation. As mentioned before, when the full set of 
control variables are assumed to generate heteroskedasticity in the heteroskedastic probit 
specification, estimation was not feasible in the first and third cases discussed below due 
to non-convergence.

The first exercise is motivated by the following question: when MFI activities increase moderately 
starting from a low base, does that influence the moneylender interest rate in any significant 
way? We focus on the sample from the lower half of the MFI coverage distribution, and define 
the lowest group (first quartile) as our comparison group and the second quartile as the 
treatment group. The OLS and KV estimates for this sample are reported in the first two 
columns of Table 3. We omit the matching and minimum biased (MB) estimates for the sake of 
brevity. The results in Table 3 show that there is substantial heteroskedasticity in the treatment 
equation; the null hypothesis of homoscedasticity is rejected at less than 1 percent significance 
level. This provides confidence that the Klein and Vella (2009a) approach is suitable for estimation. 
The F-statistic for exclusion restriction on the instrument derived from the heteroskedastic probit is 
38.5, which substantially exceeds the rule of thumb F-statistic of 10. The signs of both OLS and 
KV estimates are positive, but the magnitudes are small relative to the estimates in Tables 1 and 
2. Perhaps, more importantly, none of the estimates are statistically significant even at the 20 
percent level. This evidence suggests no significant impact of a moderate increase in MFI 
coverage on moneylender interest rate when the initial coverage rate is low.

For the next exercise, we take the third quartile as our treatment group, and use two alternative 
comparison groups. First, we take the first quartile as the comparison group. The results are 
reported in columns (3) and (4) in Table 3. The OLS and KV estimates contradict each other, 
and both the estimates are not significant at the 10 percent level. The second comparison group 
consists of the first and second quartiles, implying that the comparison group is same as that in

Xi 
Xi 
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the empirical analysis reported earlier in Tables 1 and 2. The OLS and KV estimates are 
reported in columns (5) and (6) in Table 3 respectively. The diagnostic test shows that 
heteroskedasticity in the residuals of the treatment equation is not strong, which leads to low 
explanatory power of the instrument (the Angrist-Pischke F is 8.29, much lower than the ones 
reported in Tables (1) and (2). It is also smaller than the rule of thumb cut-off 10). This raises 
concerns that the estimates from this specification may not be reliable. To avoid weak instrument 
bias, we thus report results from an alternative specification that includes the full set of control 
variables as sources of heteroskedasticity; the estimation results are reported in column (7). 
The LR test of the null of homoskedastcity in this case is rejected resoundingly, and the instrument 
is also not weak (the Angrist-Pischke F statistic is 81.65). However, the conclusion does not 
depend on the specification; the results in columns (6) and (7) both show no statistically significant 
effect of higher MFI coverage on moneylender interest rate. The results on the third quartile as 
the treatment group suggest that the positive effects of MFI penetration on moneylender 
interest rates reported earlier in Tables (1) and (2) are likely to be driven by the fact that a 
perceptible effect on the informal interest rate is observed only when MFI activities cover a large 
enough proportion of the households in a village. This plausible conjecture is validated by the 
results reported in the last two columns of Table 3.

For the estimates reported in the last two columns (Columns (8) and (9)), we again take the first 
and second quartiles as the comparison group, but the fourth quartile is the treatment group. 
The effects of MFI coverage are positive and large in magnitudes in both the OLS and KV regressions. 
The coefficients are statistically significant at the 1 percent level. Both of these estimates are 
larger than those reported in Tables 1 (column 4) and Table 2 (column 4). The KV estimate 
indicates a large effect of higher MFI coverage on moneylender interest rate.

3. MFI Membership and Household Borrowing from Informal Sources
As discussed in details before, a higher moneylender interest rate following the spread of MFI 
programs in a village credit market is consistent with alternative hypotheses regarding the 
household borrowing. To distinguish between these alternative explanations, in this section we 
provide an analysis of household’s borrowing from informal sources including moneylenders. 
The focus of the analysis is on the question whether MFI membership in fact increases the 
probability that a household borrows from informal sources, even though it did not borrow from 
them before, as argued by the critics of microcredit. We take advantage of household level 
panel data for the empirical analysis. We also shed light on the average informal loan size of the 
MFI members compared with non-MFI members.

3.1 Identification Issues and Empirical Strategy
Estimation of the effects of MFI membership on the propensity to borrow from informal sources 
faces challenges arising from household self-selection, MFI placement and screening choices. 
For example, households in a village may participate more in MFI programs and also take more 
loans from the moneylenders, both driven by higher aggregate demand for credit due to higher 
productivity potential in that village. Selection bias can also be due to unobserved household 
characteristics, as the households that participate and that do not may be systematically different. 
Two of the salient unobserved household characteristics in the context of our analysis are 
entrepreneurial ability and risk preference. According to the standard models of occupational 
choice (Kanbur (1979), Kihlstrom and Laffont (1979)), less risk-averse and high ability 
households would choose to experiment with new economic activities such as non-farm 



26 Note, however, that this requires that the households are aware of their differential learning capacity and 
estimate it with reasonable accuracy before they apply for the MFI loans. Otherwise, such learning differences 
may affect the decision to take informal loans conditional on becoming an MFI member, but would not affect the 
self-selection into MFI membership.

microenterprises. Also, a household with higher entrepreneurial ability is more likely to join the 
MFI. Households with higher ability and risk preference would thus need more loans from the 
moneylender, especially if the investment projects are indivisible. The fact that it is impossible to 
find reliable information on household ability and preference heterogeneity implies that the OLS 
estimates are likely to suffer from omitted variables bias. For example, we do not have good 
measures of ability, it is subsumed in the error term, and the omitted ability can create a spurious 
positive effect of MFI membership on the probability of moneylender loans taken by the households. 
However, note that the direction of bias from unobserved heterogeneity cannot be pinned down 
from a priori theoretical reasoning alone. For example, omitted ability heterogeneity can instead 
result in a negative bias if high ability reduces the probability of joining an MFI because the outside 
option is higher (for example, higher educated women becoming teacher in the village school).

To deal with the biases resulting from MFI placement and selection of households into MFI 
membership, we take advantage of a two-round panel data that span seven years, from 2000 
to 2007. We implement household fixed effects in a difference-in-difference (DID) framework. 
Consider the following DID specification:

Where Ti is the treatment dummy which takes on the value of 1 if household i is an MFI member 
in the year 2007, but was not a member in the initial survey year 2000, Bit is a binary variable which 
takes the value of unity if household i borrowed from informal sources in 2007, but did not borrow 
in 2000, d07 is a dummy that equals 1 for 2007, and eit  is the residual term. This specification 
exploits household fixed effects in a DID framework by defining the treatment and outcome 
variables appropriately. It effectively differences out the time invariant household characteristics 
(ability and risk aversion); it also wipes out the effect of time invariant village characteristics that 
may have affected MFI placement decisions. However, one may still worry about time varying 
unobservables that could potentially bias the estimates; perhaps the most important 
time-varying factor in our context is dynamic learning effects that vary across households.26 
For example, ability to learn, and deal with “disequilibria” may depend on the education level 
and experience as emphasized by Schultz (1975). We thus include a set of household 
characteristics from the 2000 round of the survey including the household head’s education 
and age (as a proxy for experience) to allow for differential learning across households. The 
specification thus becomes:  

Where X00,i is a vector of household characteristics from the 2000 round of the panel, thus 
determined prior to the treatment. Note that our treatment group consists of all of the households 
that joined MFI programs in any year after 2000 and before the second round survey in 2007.  
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Bit =   0 +   1 d07 +   2 Ti +    3 (d07 * Ti ) + eit (5)θ θ θ θ

Bit =   0 +   1 d07 +   2 Ti +   3 (d07 * Ti ) + X00,i   +eit (6)θ θ θ θ Π
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We also provide evidence from an approach that combines the DID approach with matching in the 
spirit of Heckman et al. (1998) (in addition to household fixed effects). The combination of matching 
with DID is called MDID by Blundell and Costa-Dias (2011). The MDID-FE approach utilized here 
matches treatment and comparison groups on the basis of pre-intervention characteristics after 
household fixed effects. Matching can improve upon the linear conditional DID-FE model in 
equation (6) above in two ways: (i) it allows for nonlinear effects of the pre-treatment observable 
characteristics in the DID-FE model which would be able to capture the dynamic learning effects 
more faithfully without imposing any functional form assumption and (ii) it imposes the common 
support condition. In addition to a standard matching estimator, we also use the MB estimator 
in the implementation of the MDID approachin a household fixed effect model (henceforth 
called MBDID-FE). As noted earlier, the MB estimator minimizes the bias due to potential failure 
of conditional independence assumption. As before, we assume the radius of the neighborhood 
to be 0.25 which means that at least 25 percent of the both the treatment and control groups 
have a propensity score in this interval used in the estimation of causal effect.27

The progressively richer and more flexible empirical models from DID-FE to MDID-FE to 
MBDID-FE allow us to understand the sensitivity of the estimates due to violation of the CIA, 
possibly because of dynamic learning effects. It is important to appreciate that if the main 
sources of unobserved heterogeneity are innate entrepreneurial ability and attitude toward risks 
which are arguably time-invariant, then the estimates should not vary substantially across these 
alternative empirical models. This provides a way to gauge the importance of unobserved 
time-varying factors in our application.

For implementation of the above discussed empirical strategy, we use alternative comparison 
groups. We exclude the households which were members of MFIs in both years from our 
sample, because no pretreatment benchmark is available for them. There are two groups who 
can serve as comparison groups: households which had not been members of MFI on both 
survey years (termed as “never member”) and households who were members in 2000 but not 
in 2007 (termed as “drop-outs”). The drop-outs are considered by many to be more comparable 
to the new members as both of these groups are MFI clients. We also put together the ‘never 
members’ with the ‘drop-outs’ as an additional comparison group, as failure to include the 
drop-outs may overestimate the effects of MFI membership on household outcomes 
(Alexander-Tedeschi and Karlan (2009)).

3.2 Data

The household level panel data for two rounds (2000 and 2007) from the BIDS-BRAC surveys 
are used for our analysis. These two rounds of the surveys have complete information on 1599 
households. The sample used for estimation is however a bit smaller (1365), as we exclude the 
households (234) who had been MFI members in both survey years and thus lack observations 
on pre-treatment period(s). Out of the sample of 1365 households, 376 households are new 
members, 142 are drop-outs and rest (844) were never member in MFI institutions. The MFI 
participation rate in 2007 is 38 percent which is consistent with evidence from representative 
national surveys such as Household Income and Expenditure Survey 2010 (According to HIES 
2010, MFI participation rate in rural Bangladesh is about 30 percent). In the full sample, about 7.11 
percent (97) households are new borrowers from the informal sources in 2007. About 4 percent of 
new MFI members borrow from informal sources compared with 8.3 percent among non-members.

27 Note also that the heteroskedasticity based IV estimator is not applicable here, because the dependent variable is binary.
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3.3 Empirical Results

Table 4 reports the estimation results for the effects of MFI membership on propensity to borrow 
from informal sources. The upper panel shows the results when the comparison group is 
defined to include only those who have not been MFI members in both survey years. The 
comparison group in middle panel consists of drop-outs who were MFI members in 2000 but not 
in 2007. The comparison group in the final panel combines both the drop-outs and never members. 

We begin by presenting the DID-FE estimate of the effect of MFI membership which is reported 
in column (1) of Table 4. This specification (equation 5) does not include any household or 
region level controls. The estimates in column 1 show that the coefficient of ‘new’ membership 
in MFIs has a negative sign and is statistically significant at the 1 percent level regardless of the 
ways comparison groups are defined. The magnitude of the coefficient is larger when drop-outs 
are taken as the comparison group compared with the case where “never members” are the 
comparison group. These DID-FE estimates suggest a significant decline (0.04-0.06) in the 
propensity to borrow from informal sources by the new MFI members.

To check the sensitivity of the DID-FE estimates when we allow for time-varying effects of 
household and region characteristics, we estimate the specification in equation (6). Column (2) 
reports the results when household characteristics in 2000 are added and column (3) when both 
household and region characteristics in 2000 are included as explanatory variables. The 
household level variables included are log of household head’s age, a dummy indicating 
whether the head has above primary level education, total owned and total cultivable land, 
number of household members self-employed in agriculture, and household size. To control 

Table 4 
MFI Membership and Propensity to Borrow from Informal Sources 

DID-FE MDID-FE MBDID-FE

(1) (2) (3) (4) (5)

Control group: Never members

MFI member -0.041
(2.64)***

-0.044
(2.76)***

-0.047
(2.97)***

-0.043
(3.09)***

-0.065
(2.57)***

No. of Observations 1223 1223 1223 1223 1223

Control group: Dropouts

MFI member -0.059
(2.63)***

-0.054
(2.39)**

-0.053
(2.34)**

-0.049
(1.82)*

-0.083
(2.20)***

No. of Observations 521 521 521 521 521

Control group: Never members & Dropouts

MFI member -0.044
(3.27)***

-0.046
(2.90)***

-0.049
(3.09)***

-0.044
(3.32)***

-0.059
(2.81)***

No. of Observations 1365 1365 1365 1365 1365

Household Controls No Yes Yes Yes Yes

Region Controls No No Yes Yes Yes

* significant at 10%; ** significant at 5%; *** significant at 1%
Absolute t statistics in parentheses.
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28 We emphasize here that the central conclusions of this paper do not depend on the exact set of variables used 
as controls or for matching.

for region-specific effect, we include a dummy indicating the poorer region in the country 
(three divisions in the north-west and south). We perform t-tests of differences in means of 
these characteristics between treatment group and different comparison groups. The results 
(not reported here) indicate that ‘never member’ comparison group consists of households 
whose head are older and which are more agricultural (more land, more members employed in 
agriculture). There is no significant difference in education, household size or religion between 
these two groups. In the case of ‘drop-out’ comparison group, there is statistically significant 
difference in mean only for household head’s age and to some extent for the number of members 
self-employed in agriculture. If household-level heterogeneity has time-varying effects, then 
one would expect DID-FE estimates to change significantly when household level controls 
(pretreatment) are added to the regression. The estimates in column (2) show a slight increase 
in the magnitude of the treatment coefficients for “never member” and “both drop-out and never 
member” comparison groups, and a slight decline for “drop-out” comparison group. We find 
changes in the same directions when region dummy is added in the set of controls (column (3)). 
However, none of the estimates are statistically or numerically significantly different from those 
reported in column 1. This can be interpreted as suggestive evidence that probably the most 
important sources of selection biasin our application are in fact time-invariant.

To probe the issue of time-varying omitted variables bias in more depth, we report estimates 
that combine the DID-FE with two alternative matching estimators. The results from the MDID-FE 
estimator suggested by Heckman et al. (1998) are reported in column (4) of Table 4. Matching 
is done using pre-treatment (in other words 2000 survey) household and region characteristics 
discussed earlier.28 The estimate in the case of drop-out control (column (4), middle panel) is 
slightly smaller in absolute magnitude compared with that in column (2) but they are not statistically 
significantly different. All other estimates in column (4) (topmost and lowest panels) are nearly 
indistinguishable from those in column (1). The final column in Table 4 reports the results from 
the MBDID-FE approach discussed before which minimizes the bias due to the violation of the 
CIA arising from non-parallel trends in the augmented DID-FE model, which can happen if 
dynamic learning effects are not adequately captured by the pretreatment household characteristics 
and regional dummy. The estimates in column (5) are all larger in absolute magnitude, but they 
are not statistically significantly different from those reported in rest of the columns in Table 4. 
The evidence from the MB-DID-FE approach thus provides strong support to the conclusion 
that the main sources of selection bias are time-invariant factors such as innate entrepreneurial 
ability and risk aversion, and thus time varying unobservables do not constitute a major threat 
to internal validity of the DID-FE estimates.

As an additional robustness check, we redo the analysis for a restricted sample that excludes 
any household with land ownership more than one acre. The idea behind this exercise is to 
focus on the households who are collateral poor and thus are likely to be excluded from the 
formal credit market. These are also the target population of most of the MFI programs. The 
results are reported in Table 5. The estimates in Table 5 confirm the conclusion that once a 
household becomes MFI member it is less likely to borrow from the informal sources.

The estimates in Tables 4 and 5 provide robust evidence that the propensity to borrow from 
informal sources declines significantly after households join into MFI programs. Given the 
average propensity to borrow from informal sources is about 7.1 percent, the most conservative 
estimates in Table 4 imply more than halving of propensity to borrow from informal sources 
among new members of MFIs. The results thus contradict the argument by many critics of MFIs 
that they do not help the households break free from the “clutches” of moneylenders.
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3.4 Loan Size and Market Share of Informal Credit

A simple comparison of borrowing rates between 2000 and 2007 indicates that borrowing from 
informal sources declined substantially from 12.5 percent in 2000 to 8.8 percent in 2007. Table 
4 provides robust evidence of a negative and significant (numerically and statistically) effect of 
MFI membership (the households that became members after 2000) on the propensity to 
borrow from informal sources. While the number of households borrowing from informal 
sources has declined in general and among new MFI members in particular, an increase in 
informal interest rate is still possible if loan sizes of the few who still borrow from informal 
sources have gone up sufficiently. If, on the other hand, the market share of moneylenders (and 
family and friends) in total credit to households has gone down, then that would provide credible 
evidence against increasing indebtedness of the left-out households due to MFI penetration.

To provide some suggestive evidence on the changes in loan sizes and market shares over 
time, we utilize the panel dataset. The number of households who reported borrowing from 
informal sources in either of the two survey years is small (189 in 2000 and 134 in 2007). Thus 
the sample size is not adequate for a formal econometric analysis of the loan size variations 
across households that borrow from informal sources. A closer look at the data reveals some 
obvious coding mistakes for the loan size data, leading to very large outliers in the amount of 
loans. For instance, the largest borrower in 2007 borrowed some 1.05 million taka, but it is a 
household with only 0.14 hectare of land, less than primary education for its head and with only 
one worker who is self-employed in agriculture. To avoid undue influence of dubious outliers, we

Table 5 
MFI Membership and Propensity to Borrow from Informal Sources:  

Land-poor Households (Less than 1 acre of agricultural land) 

DID-FE MDID-FE MBDID-FE

(1) (2) (3) (4) (5)

Control group: Never members

MFI member -0.045
(2.32)**

-0.044
(2.24)**

-0.050
(2.50)**

-0.050
(2.78)***

-0.061
(1.70)*

No. of Observations

Control group: Dropouts

MFI member -0.078
(2.72)***

-0.074
(2.54)**

-0.074
(2.55)**

-0.074
(2.07)**

-0.066
(1.39)

No. of Observations 363 363 363 363 363

Control group: Never members & Dropouts

MFI member -0.050
(2.59)***

-0.051
(2.55)**

-0.056
(2.83)***

-0.053
(3.1)***

-0.055
(1.73)*

No. of Observations 842 842 842 842 842

Household Controls No Yes Yes Yes Yes

Region Controls No No Yes Yes Yes

* significant at 10%; ** significant at 5%; *** significant at 1%
Absolute t statistics in parentheses

749 749 749 749 749
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restrict our analysis to loan amounts of Taka 50,000 or less, thus dropping of about 4.4 percent 
of the sample. The proportions of households which had not been MFI members in both years 
(“never member”) in both full and restricted samples are similar to each other. Note that focusing 
on the restricted sample may also be desirable because this is indeed the main clientele of MFI 
lenders. We also performed some robustness checks by restricting our sample to loan amount 
of Taka 100,000 or less. Overall results reported here remain unaffected. Loan outstanding 
numbers for both years are deflated using the consumer price index with base year 2005.

Figure 1 plots the average sizes of loans from different sources for both years. The loan size for 
each category in each year is estimated from data on households which reported positive 
borrowing. The average loan sizes are substantially higher for MFI loans compared with informal 
loans in both years. While average loan sizes have increased for both MFIs and informal 
sources, it declined in the case of bank loans. Even with somewhat larger increase, average size 
of informal loan is still lower than that of MFI loans in 2007 (Tk. 8,073 vs. Tk. 8,681).

Figure 1 : Average Loan Size (taka)
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Figure 1
Average Loan Size (inflation adjusted) from Different Sources

 

Table 6
Average Inflation Adjusted Loan Size (Taka)

Average loan size (Taka) Ratio 

2000 2007  (2007/2000)

New member 1245 251 0.20

Always member 478 375 0.78

Drop-out 725 669 0.92

Never member 909 721 0.79

All Households 896 555 0.62

No. of total observations 1528 1528
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29 Direct evidence on the riskiness of MFI and informal borrowers is not available in any of the datasets on 
Bangladesh. Moreover, as noted before, sample size with positive informal borrowing is too small to conduct 
any meaningful empirical analysis.

Is the increase in average size of informal loan sufficient to more than offset the decline in the 
propensity to borrow from informal sources between 2000 and 2007? To answer this question, 
we report in the upper panel of Table 6 the average loan sizes when households with no loans 
are also included in the sample. Average loan size in this case thus incorporate any change in 
the borrowing rate from each source. For the full sample, the average size of informal loan in 
2007 is 38 percent lower than that in 2000. Most dramatic decline in loan sizes happened for 
the households that became member of MFI after 2000 (“new members”, 22 percent of 
sample). These households were not member of MFI in 2000, and borrowed about Taka 1245 
from informal sources in that year. After becoming member, their borrowing from informal 
sources declined to Taka 251 in 2007. Even for households which were not members of MFIs 
in either of the years (“never members”, 52 percent of the sample), the average size of informal 
loan declined from Tk. 909 in 2000 to Tk. 721 in 2007.The decline in loan size is smaller only for 
drop-outs who were member in 2000 but not in 2007 (9.9 percent of sample).

Household borrowing data are used to define the relative market shares of different sources of 
loans for both years. The market shares are plotted in Figure 2. In 2000, 47 percent of total 
credit to households came from MFIs, 27 percent from formal banks and 26 percent from informal 
sources. The market shares have changed dramatically by 2007, with MFIs accounting for 72 
percent of total credit. Shares of informal sources halved to only 13 percent, and bank’s share 
fell to15 percent. In terms of absolute volume of loans, total volume of MFI loans nearly doubled 
between 2000 and 2007 while it declined for both bank loans and informal loans. In the case of 
informal loan, its level in 2007 was about 62 percent of its 2000 level. We find similar trends in 
market shares if we restrict our sample to all households with Tk. 100,000 or less loan outstanding. 
The evidence thus shows clearly that total loans from informal sources have declined in both 
absolute and relative terms between 2000 and 2007. The MFIs have driven not only informal 
lenders out of rural credit markets but also largely filled the gap left by withdrawal of public 
banks from rural areas.29
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4. Conclusions
Using two survey data sets from Bangladesh, we provide evidence on the effects of microfinance 
penetration into the village credit market, focusing on the effects on moneylender interest rate and 
household borrowing from informal sources. The effects of MFIs on rural credit market have been 
a topic of intense debate among practitioners and policy makers, with sharply opposing views. 
However, a careful empirical analysis of the effects of the spread of MFIs on moneylender interest 
rate and household informal borrowing is lacking in the literature.

We consider the possible biases that can result from non-random program placement by MFIs and 
self-selection by households. It is extremely difficult, if not impossible, to find credible exclusion 
restrictions to solve identification challenges in the context of microfinance programs. It may 
also not be feasible to analyze the long-run general equilibrium effects of MFI penetration into 
rural credit markets by designing randomized interventions. To address selection biases, we 
develop an empirical approach that takes advantage of recent advances in econometrics that 
do not rely on exclusion restrictions required in the standard instrumental variables strategy. In 
particular, we implement the minimum biased normalized IPW estimator proposed by Millimet 
and Tchernis (2013) and heteroskedasticity based identification approach due to Kelin and Vella 
(2009a). For the analysis of household borrowing from informal sources, we take advantage of 
panel data and implement a fixed effect difference-in-difference approach and combine it with 
alternative matching and propensity score reweighting estimators.

The empirical evidence on the effects of MFIs on moneylender interest rates based on an 
exceptionally large cross section data set with almost 800 village shows that moneylender 
interest rates do not go down when microfinance comes to a village; in fact, the interest rate 
increases when the MFI penetration into the village credit markets is high enough. The effect is 
heterogeneous; at low levels of MFI coverage, there does not seem to be any perceptible 
impact, and the effect is strong for the villages in the top quartile of coverage. The evidence based 
on the panel data demonstrates clearly that a household’s propensity to borrow from informal 
sources declines significantly once it becomes member of an MFI, and that the total volume of 
credit from informal sources (and formal banks) also decrease substantially in both absolute 
and relative terms. The evidence on the declining importance of informal sources in rural credit 
market along with higher informal interest rates contradicts some of the widely held perceptions 
among contending camps of practitioners. While our results do not support the view of MFI 
proponents that MFI competition reduces informal interest rates, the evidence also rejects the 
claim by the critics that MFIs cause increased reliance on informal loans among its borrowers 
due, for example, to rigid repayment schedules and indivisibility of investment projects. When 
taken together, the evidence on interest rates and household borrowing is more consistent with 
cream skimming by MFIs and fixed costs in informal lending by moneylenders.
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Table A.1 
Summary Statistics 

 
Mean Standard Deviation 

InM-PKSF (2006-2007) Survey  
(n=793) 

Moneylender Interest rate (monthly, simple rate) 19.10 26.42 

MFI coverage rate 42.08 22.42 

% of household with irrigation 62.00 29.94 

Distance to bank (km) 4.53 3.95 

Distance to market and facilities (km) 3.31 2.64 

No. of survey households in the village 204.69 184.38 

% of households with VGD card 6.43 14.55 

% of functionally landless household 80.04 12.50 

BIDS-BRAC Panel (2000, 2007) Survey 
(n=1365) 

‘New’ Borrowers in 2007 0.07 0.26  

‘New’ MFI members in 2007 0.28 0.45  

Log (head's age) 3.74 0.31  

Heads Education above primary 0.31 0.46  

No. of Agri Workers 0.79 0.81  

Agri. Land owned in 2000 (ha) 0.58 1.01  

Agri land cultivated in 2000 (ha) 0.41 0.71  

Household size in 2000 5.14 2.27  
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